La meccanica quantistica è una teoria fisica che si è sviluppata e consolidata nella prima metà del XX secolo, per supplire all'inadeguatezza della meccanica classica nello spiegare fenomeni e proprietà quali la radiazione di corpo nero, l'effetto fotoelettrico, il calore specifico dei solidi, gli spettri atomici, la stabilità degli atomi, l'effetto Compton: alcuni esperimenti effettuati nei primi trent'anni del XX secolo suggerivano, per esempio, la necessità di introdurre l'ipotesi di un comportamento particellare della luce, oltre a quello classico ondulatorio di eredità maxwelliana, e di postulare l'esistenza di livelli discreti di energia.
La meccanica quantistica si distingue in maniera radicale dalla meccanica classica in quanto si limita a esprimere la probabilità di ottenere un dato risultato a partirte da una certa misurazione, secondo l'interpretazione di Copenaghen, rinunciando così al determinismo assoluto proprio della fisica precedente. Questa condizione di incertezza o indeterminazione non è dovuta a una conoscenza incompleta, da parte dello sperimentatore, dello stato in cui si trova il sistema fisico osservato, ma è da considerarsi una caratteristica intrinseca, quindi ultima e ineliminabile, del sistema e del mondo subatomico in generale.
La teoria quantistica, dunque, descrive i sistemi come una sovrapposizione di stati diversi e prevede che il risultato di una misurazione non sia completamente arbitrario, ma sia incluso in un insieme di possibili valori: ciascuno di detti valori è abbinato a uno di tali stati ed è associato a una certa probabilità di presentarsi come risultato della misurazione. Questo nuovo modo di interpretare i fenomeni è stato oggetto di numerose discussioni all'interno della comunità scientifica, come testimonia l'esistenza di diverse interpretazioni della meccanica quantistica. L'osservazione ha quindi effetti importanti sul sistema osservato: collegato a questo nuovo concetto si ha l'impossibilità di conoscere esattamente i valori di coppie di variabili dinamiche coniugate, espressa dal principio di indeterminazione
La meccanica quantistica rappresenta il denominatore comune di tutta la fisica moderna ovvero della fisica atomica, della fisica nucleare e sub-nucleare (la fisica delle particelle), e della Fisica Teorica, a testimonianza della sua estrema potenza concettuale-interpretativa nonché della vasta applicabilità al mondo microscopico
La meccanica quantistica si distingue in maniera radicale dalla meccanica classica in quanto si limita a esprimere la probabilità di ottenere un dato risultato a partirte da una certa misurazione, secondo l'interpretazione di Copenaghen, rinunciando così al determinismo assoluto proprio della fisica precedente. Questa condizione di incertezza o indeterminazione non è dovuta a una conoscenza incompleta, da parte dello sperimentatore, dello stato in cui si trova il sistema fisico osservato, ma è da considerarsi una caratteristica intrinseca, quindi ultima e ineliminabile, del sistema e del mondo subatomico in generale.
La teoria quantistica, dunque, descrive i sistemi come una sovrapposizione di stati diversi e prevede che il risultato di una misurazione non sia completamente arbitrario, ma sia incluso in un insieme di possibili valori: ciascuno di detti valori è abbinato a uno di tali stati ed è associato a una certa probabilità di presentarsi come risultato della misurazione. Questo nuovo modo di interpretare i fenomeni è stato oggetto di numerose discussioni all'interno della comunità scientifica, come testimonia l'esistenza di diverse interpretazioni della meccanica quantistica. L'osservazione ha quindi effetti importanti sul sistema osservato: collegato a questo nuovo concetto si ha l'impossibilità di conoscere esattamente i valori di coppie di variabili dinamiche coniugate, espressa dal principio di indeterminazione
La meccanica quantistica rappresenta il denominatore comune di tutta la fisica moderna ovvero della fisica atomica, della fisica nucleare e sub-nucleare (la fisica delle particelle), e della Fisica Teorica, a testimonianza della sua estrema potenza concettuale-interpretativa nonché della vasta applicabilità al mondo microscopico
tratto da:
Nessun commento:
Posta un commento